
Liberty BASIC Community Wiki

by Richard Russell, November 2013

For a long time it was thought to be impossible to call a method in a COM object from LB (without the aid
of a 'helper' DLL). I proved that to be incorrect with my Speech synthesis without a helper DLL example,
which calls the SpVoice::Speak method from native LB code.

However the technique used in that example has limitations, specifically it works only with methods that
take exactly two parameters (which fortunately SpVoice::Speak does) and it's not easily adapted to other
applications.

I have recently realised that both those shortcomings can be overcome! I have written a little LB function
CallMethod which allows you to call any method in any COM object, and which is simple to use.

I have tackled the need to supply a variable number of parameters (with different types) by passing them
in a structure. For example, suppose we want to call the IDirect3DDevice9::DrawPrimitive method,
which takes three parameters. This is how it's done:

 DrawPrimitive = 81
 struct parm, PrimitiveType as long, _
 StartVertex as ulong, _
 PrimitiveCount as ulong
 parm.PrimitiveType.struct = type
 parm.StartVertex.struct = start
 parm.PrimitiveCount.struct = count
 result = CallMethod(IDirect3DDevice9, DrawPrimitive, parm.struct)

Here IDirect3DDevice9 is the pointer to the object's interface, DrawPrimitive is the zero-based index of
the method to be called (81) and parm.struct is the structure containing the parameters for the method
call.

You can't have an 'empty' structure so in a case when the method takes no parameters pass an empty string
instead. For example to call the IDirect3DDevice9::Release method:

 Release = 2
 result = CallMethod(IDirect3DDevice9, Release, "")

Being able to access COM objects from LB opens up a wide range of applications, for example a media
player using Direct Show or animated 3D graphics using Direct3D. Most 'modern' Windows APIs are
object-based.

Here is an example of the use of the CallMethod function to create a desktop shortcut. It does that by
calling methods in the IShellLink interface to create the shortcut and the IPersistFile interface to store it
on the desktop:

 page 1 / 4

http://www.b6sw.com/forum/viewtopic.php?t=597
http://msdn.microsoft.com/en-us/library/windows/desktop/bb174371.aspx

Liberty BASIC Community Wiki

' Create and store a shortcut, version 1.0, 03-Nov-2013
' Demonstrates calling COM methods from Liberty BASIC!
' (C) Richard Russell 2013, http://www.rtrussell.co.uk/

 call shortcut SpecialFolder$(0) + "\Test Shortcut.lnk", _
 StartupDir$ + "\liberty.exe", _
 DefaultDir$, _
 "Test shortcut created by Liberty BASIC"
 end

' Use the IShellLink and IPersistFile COM interfaces to
' create and store a shortcut to the specified object.
' LnkFile$ - the path/filename of the shortcut (.LNK)
' Target$ - the object for which to create a shortcut
' StartIn$ - the working directory to start in
' Comment$ - the description of the shortcut
sub shortcut LnkFile$, Target$, StartIn$, Comment$

 open "OLE32.DLL" for DLL as #ole32
 calldll #ole32, "CoInitialize", 0 as long, r as long

 struct clsid, a as long, b as long, c as long, d as long
 struct iidsl, a as long, b as long, c as long, d as long
 struct iidpf, a as long, b as long, c as long, d as long

 clsid.a.struct = hexdec("00021401") ' CLSID_ShellLink
 clsid.b.struct = hexdec("00000000")
 clsid.c.struct = hexdec("000000C0")
 clsid.d.struct = hexdec("46000000")

 iidsl.a.struct = hexdec("000214EE") ' IID_IShellLink
 iidsl.b.struct = hexdec("00000000")
 iidsl.c.struct = hexdec("000000C0")
 iidsl.d.struct = hexdec("46000000")

 iidpf.a.struct = hexdec("0000010B") ' IID_IPersistFile
 iidpf.b.struct = hexdec("00000000")
 iidpf.c.struct = hexdec("000000C0")
 iidpf.d.struct = hexdec("46000000")

 ' Get a pointer to the IShellLink interface:
 CLSCTX.INPROC.SERVER = 1
 struct temp, v as long
 calldll #ole32, "CoCreateInstance", clsid as struct, 0 as long, _
 CLSCTX.INPROC.SERVER as long, iidsl as struct, _
 temp as struct, r as long

 page 2 / 4

Liberty BASIC Community Wiki

 psl = temp.v.struct
 if psl = 0 then notice "Cannot create IShellLink interface" : end

 ' Set the target object, working directory and description:
 struct parm, psz as ptr
 parm.psz.struct = Target$
 result = CallMethod(psl, 20, parm.struct) ' IShellLink::SetPath
 parm.psz.struct = StartIn$
 result = CallMethod(psl, 9, parm.struct)
' IShellLink::SetWorkingDirectory
 parm.psz.struct = Comment$
 result = CallMethod(psl, 7, parm.struct)
' IShellLink::SetDescription

 ' Query IShellLink for the IPersistFile interface:
 struct temp, v as long
 struct parm, iid as struct, ppv as struct
 parm.iid.struct = iidpf.struct
 parm.ppv.struct = temp.struct
 result = CallMethod(psl, 0, parm.struct)
' IShellLink::QueryInterface
 temp.struct = parm.ppv.struct
 ppf = temp.v.struct
 IF ppf = 0 then notice
"Cannot create IPersistFile interface" : end

 ' Convert the path/filename string to Unicode:
 wsz$ = space$(2*len(LnkFile$) + 2)
 n = len(wsz$) / 2
 calldll #kernel32, "MultiByteToWideChar", 0 as long, 0 as long, _
 LnkFile$ as ptr, -1 as long, wsz$ as ptr, _
 n as long, r as long

 ' Save the shortcut:
 struct parm, pszFilename as ptr, fRemember as long
 parm.pszFilename.struct = wsz$
 parm.fRemember.struct = 1
 result = CallMethod(ppf, 6, parm.struct) ' IPersistFile::Save

 ' Tidy up:
 result = CallMethod(ppf, 2, "") ' IPersistFile::Release
 result = CallMethod(psl, 2, "") ' IShellLink::Release
 calldll #ole32, "CoUninitialize", r as void
 close #ole32
end sub

 page 3 / 4

Liberty BASIC Community Wiki

' Call a COM method:
' object - a pointer to the COM object interface
' method - the zero-based index of the method to be called
' parm$ - a structure containing the parameters to be passed
function CallMethod(object, method, parm$)
 code$ = chr$(139)+"D$"+chr$(4)+chr$(139)+"T$"+chr$(8)+chr$(139)+
"L$" _
 + chr$(16)+"VW"+chr$(139)+"t$"+chr$(20)+chr$(43)+chr$(225)+
chr$(139) _
 + chr$(252)+chr$(243)+chr$(164)+chr$(80)+chr$(139)+chr$(0)+
chr$(255) _
 + chr$(20)+chr$(144)+chr$(95)+chr$(94)+chr$(194)+chr$(16)+chr$(0)

 p$ = parm$
 n = len(p$)
 calldll #user32, "CallWindowProcA", code$ as ptr, object as
long, _
 method as long, p$ as ptr, n as long, CallMethod as long
end function

' Get the location of a Special Folder:
function SpecialFolder$(csidl)
 struct idl, pp as long
 calldll #shell32, "SHGetSpecialFolderLocation", _
 0 as long, csidl as long, idl as struct, r as long
 if r = 0 then
 path$ = space$(_MAX_PATH)
 ppidl = idl.pp.struct
 calldll #shell32, "SHGetPathFromIDListA", _
 ppidl as long, path$ as ptr, r as long
 SpecialFolder$ = trim$(path$)
 open "OLE32.DLL" for DLL as #ole32
 calldll #ole32, "CoTaskMemFree", ppidl as long, _
 r as long
 close #ole32
 end if
end function

Powered by TCPDF (www.tcpdf.org)

 page 4 / 4

http://www.tcpdf.org

	Calling methods in COM objects

