Liberty BASIC Community Wiki

Entry for Rod's Variables (2105) challenge

It's got too big to put it on a forum. Actually, I tried to do a tokenizer so it figures out all things including
numbers and strings. But after figuring things out it outputs only things that relevant to this task (variables,
subs/user functions, labels).

Uses keyword list etc from Rod's entry.

Tested on biggest program I've ever seen in LB - freeform404.bas ;)

"vari abl e chal | enge
"tsh73, Jan 2015

gl obal t.maxTokens, t.nane, t.type, tp.line, tp.stmt, tp.num
gl obal cur TokenNum cur TokNum nLi nes, cur St imt Num contLi ne
[nonUsedLabel] dummy=1: dumy2=dummy ' non-used line with a (:)
unDi nmed(3) =1 "exanpl e of un-di med array

gosub [setlLists]

' f name$="var s01. bas"

'f nanme$="var s02. bas"
'f name$="test . bas"

filedialog "Select file to process"; chr$(0);"open", "*.bas", fnanme$
if fname$="" then print "No file selected - bye": end
print "Processing "; fnane$

t . maxTokens=100000
t.nane = 0

t.type =1

di mt oken$(t. maxTokens, 1)

tp.line=0

tp.stmt =1

tp. num=2

di m t okenPos(t. maxTokens, 2)

cur TokenNum=0 ' gl obal

cur TokNum=0 "in a statenent (that is between (:))

verbose = 0 '1

open fnanme$ for input as #1

nLi nes=1

i sConti nuati on=0

print "Reading parsing line by line..."

page 1/ 13

http://libertybasic.conforums.com/index.cgi?action=display&board=contests&num=1418803980&start=0#1419329462

Liberty BASIC Community Wiki

tO=ti me$("ns")
whi | e not (eof (#1))
nLi nes=nLi nes+1
line input #1, aLine$
if verbose then print ">"; aLine$
cur St mt Nunr1
cur TokNum=0

if isContinuation then
if contLine=0 then contLine = nLines-1
i sConti nuati on=0

el se
cont Li ne=0

end if

while 1
scan
‘reading a line splitting it to tokens
"1) skip all starting spaces
aLi ne$=rentst art Spaces$(aLi ne$)
"exit if nothing left
if aLine$="" then exit while
"print ":"; aLine$
'2) check special sequences
' comrent

if left$(aLine$,1)=""" then 'skip line as coment
if verbose then print " coment ski pped”

exit while
end if
"3) recognize / read / cut token
sel ect case
*3.1) check special sequences
"[| abel]
case |l eft$(aLines, 1)="["
| abel $=upt o$(aLi ne$, "]")+"]"
aLi ne$=after$(aLi ne$, "]")

if verbose then print " | abel : ;1 abel $

call storeToken | abel$, "Ibl"

'3.2) check speci al sequences
""string”

case | eft$(aLine$, 1)=qq$ 'string
aLi ne$=mi d$(aLi ne$, 2) ‘cut left (")
ast ri ng$=qq$+upt o$(aLi ne$, qq$) +qq$
aLi ne$=aft er $(aLi ne$, qg$)
if verbose then print " string: ";
call storeToken aString$, "str"

astring$

page 2/ 13

Liberty BASIC Community Wiki

case |l eft$(aLine$, 1)="_" and instr(varChars$, m d$(
aLi ne$, 2, 1)) <>0 ' wi nConst

t oken$=Il ef t $(aLi ne$, 1)

aLi ne$=m d$(aLi ne$, 2)

whil e instr(varChars$;"_", |eft$(aLine$, 1))<>0
t oken$=t oken$+l ef t $(aLi ne$, 1)
aLi ne$=m d$(aLi ne$, 2)
if aLine$="" then exit while

wend

if verbose then print " W ndows constant: ";token$

call storeToken token$, "w nConst"

case | eft$(aLines, 1)="_"
aLi ne$=m d$(aLi ne$, 2) 'cut token
if verbose then print " continuation char"
"call storeToken " ", " " 'do not store?
i sConti nuati on=1

case | eft$(aLines, 1)=":"
aLi ne$=m d$(aLi ne$, 2) 'cut token
if verbose then print " oper at or separator”
call storeToken ":™,6 ":"
cur St mt Num=cur St mt Num+1
cur TokNum=0

case left$(aLine$, 1)="|"
aLi ne$=m d$(aLi ne$, 2) 'cut token
if verbose then print " menu separ at or”
call storeToken "|", "|"

case | eft$(aLines, 1)=","
aLi ne$=m d$(aLi ne$, 2) 'cut token
if verbose then print par amet er separ at or
call storeToken ",", ","

case |l eft$(aLine$, 1)=";"
aLi ne$=m d$(aLi ne$, 2) 'cut token
if verbose then print " concat enati on"

call storeToken ";", X

case | eft$(aLines, 1)="="
aLi ne$=m d$(aLi ne$, 2) 'cut token
if verbose then print " assi gnnment or equal
call storeToken "=", "="

page 3/ 13

Liberty BASIC Community Wiki

case |l eft$(aLines$, 1)="("

aLi ne$=mi d$(aLi ne$, 2) 'cut token
if verbose then print " opening ("
call storeToken " (", "("

case left$(aLine$, 1)=")"
aLi ne$=m d$(aLi ne$, 2) 'cut token
if verbose then print " closing)"
call storeToken ")", ")"

case | eft$(aLines$, 1)="#" 'handle

t oken$=I ef t $(aLi ne$, 1)

aLi ne$=mi d$(aLi ne$, 2)

while instr(varChars$, |eft$(aLine$, 1))<>0
t oken$=t oken$+l ef t $(aLi ne$, 1)
aLi ne$=m d$(aLi ne$, 2)
if aLine$="" then exit while

wend

if verbose then print " handl e: ";token$

call storeToken token$, "hndl"

case instr(firstVarChars$, |eft$(aLine$, 1))<>0
"nane (var, arr, sub, func) or keyword
t oken$=I ef t $(aLi ne$, 1)
aLi ne$=m d$(aLi ne$, 2)
whil e instr(varChars$, left$(aLine$, 1))<>0 _

or (left$(aLine$, 1)="_" and instr(varChars$, m d$(

aLine$, 2,1))<>0)
t oken$=t oken$+l ef t $(aLi ne$, 1)
aLi ne$=m d$(aLi ne$, 2)
if aLine$="" then exit while
wend
sel ect case
case instr(

comist$;typlist$;opelist$d, " ";lower$(tokens$);" ")<>0
if verbose then print " keyword: ";token$
call storeToken token$, "kwd"
"if REM
if lower$(token$) = "renmt then 'comment
if verbose then print " coment ski pped”
exit while
end if
case el se
if verbose then print
"nane (var, array, sub, or func): ";token$

call storeToken token$, "nane"

page 4/ 13

Liberty BASIC Community Wiki

end sel ect

case instr(firstNunChars$, |eft$(aLine$, 1))<>0 ' nunber?
not ANunber =0
sel ect case
case instr(digits$, |eft$(aLine$, 1))<>0
t oken$=I ef t $(aLi ne$, 1)
aLi ne$=m d$(aLi ne$, 2)
case instr("-.", left$(aLine$, 1))<>0 and | sNunber (
| ef t $(aLi ne$, 2)) <>0
t oken$=I ef t $(aLi ne$, 2)
aLi ne$=mi d$(aLi ne$, 3)
case left$(aLine$, 2)="-." and | sNunber (Il eft$(aLine$, 3))<>0
t oken$=I ef t $(aLi ne$, 3)
aLi ne$=m d$(aLi ne$, 4)
case el se
not ANunber =1
end sel ect
i f not ANunber =0 t hen
‘read rest of a nunber
whi | e | sNunber (t oken$) <>0
t oken$=t oken$+l ef t $(aLi ne$, 1)
aLi ne$=m d$(aLi ne$, 2)
if aLine$="" then exit while
wend
i f IsNunber (token$)=0 then
'one char extra
aLi ne$=ri ght $(t oken$, 1)+alLi ne$
t oken$=Il ef t $(t oken$, | en(token$)-1)

end if
if verbose then print "nunber: ";token$
call storeToken token$, "nunt

el se "shoul d be single "-" (or not conpiles)

t oken$=Il ef t $(aLi ne$, 1)
aLi ne$=m d$(aLi ne$, 2)

if verbose then print " operator ";token$
call storeToken token$, "op"
end if
"shoul d be noved after "nunbers" so "-1" does not process as "-" "1"
case instr("<>+-*/7" |eft$(aLine$, 1))<>0
t oken$=I ef t $(aLi ne$, 1)
aLi ne$=mi d$(aLi ne$, 2) 'cut token
if verbose then print " operator ";token$

call storeToken token$, "op"

page 5/ 13

Liberty BASIC Community Wiki

case el se
t oken$=I ef t $(aLi ne$, 1)
aLi ne$=mi d$(aLi ne$, 2)
if verbose then print "??char:
call storeToken token$, "??2?"
end sel ect
wend
wend
cl ose #1
print "-------moaaao "
print "nLines=", nLi nes
print "nuniTokens="; cur TokenNum

print time$("nms")-t0;" ns"
tO=ti me$("nms")

goto [SkipPrint]
for i = 1 to curTokenNum
print tokenPos(i, tp.line);" ";
t okenPos(i, tp.stmt);" ";
t okenPos(i, tp.num, _
t oken$(i, t.type), _
t oken$(i, t.name)

next
[Ski pPrint]

‘second pass al ong token$ array, check for next
s/ arrays
Print "second pass al ong token$ array..."
i =0
while i <= curTokenNum

i=i+1

if token$(i, t.type)="nane" then

i f 1 +1l<=cur TokenNum t hen
if token$(i+1, t.type)="(" and _

t okenPos(i, tp.line) = tokenPos(i +1,
t okenPos(i, tp.stmmt) = tokenPos(i +1,

"t oken$

"(" - to tel

if instr(funlist$, " ";lower$(token$(i,
" ")<>0 then

token$(i, t.type)="buil dl nFunc"

el se
t oken$(i, t.type)="UDForArray"

end if

end if
end if

functi on

tp.line) and _
tp.stmmt) then
t.nane));

page 6/ 13

Liberty BASIC Community Wiki

end if
wend
print time$("nms")-t0;" ns"
tO=ti me$("ns")

"third pass, check for functions/subs/arrays
Print "third pass along token$ array..."

I =0
while i <= curTokenNum
i =i +1
if tokenPos(i, tp.num = 1 then "first token on a stmmt

sel ect case
case | ower$(token$(i, t.nane)) ="dinm or |ower$(tokens$(i,
t.nane)) ="redin
curLine = tokenPos(i, tp.line)
curStmmt = tokenPos(i, tp.stmt)
whi | e i +1<=cur TokenNum
i f curlLine <> tokenPos(i+1, tp.line) _
or curStmt <> tokenPos(i+1, tp.stmmt) then
exit while
i=i+1
if token$(i, t.type)="UDForArray" then token$(i,
t.type)="di medArray"
"mark all other instances
for j = 1 to curTokenNum
if token$(j, t.nane)=token$(i, t.nane) and _
token$(j, t.type)="UDForArray" then
t oken$(j, t.type)="di nmedArray"
next
wend

case |ower$(token$(i, t.nane)) ="sub" or |ower$(token$(i,
t.nane)) ="call"
i =i +1
t oken$(i, t.type)="sub"

case |ower$(token$(i, t.nane)) ="function"
i =i +1
t oken$(i, t.type)="UDF"
"mark all other instances
for j = 1 to curTokenNum
if token$(j, t.nane)=token$(i, t.nane) and _
token$(j, t.type)="UDForArray" then token$(j,
t.type)="UDF"
next
end sel ect

page 7/ 13

Liberty BASIC Community Wiki

end if
wend
print time$("nms")-t0;" ns"
tO=ti me$("ns")

“all other "UDForArray" are undi med arrays
Print "l ast pass along token$ array..."
for j = 1 to curTokenNum
if token$(j, t.type)="UDForArray" then token$(j, t.type)=
"unDi nmedArray”
next

goto [Ski pPrint 2]
print "---------oo-- "
for i = 1 to curTokenNum
print tokenPos(i, tp.line);" ";
t okenPos(i, tp.stmt);" ";
t okenPos(i, tp.num, _
t oken$(i, t.type), _
t oken$(i, t.name)

[Ski pPrint 2]

print time$("nms")-t0;" ns"
tO=ti me$("nms")

‘count vari abl es
Print "Counting ..."

un. t ypeNanme=0
un. count =1
di m uni queNarme$(cur TokenNum 1)

al ndex$ = ""
"alndex would be in a form ######| word|, where ###### index in a()
"You can guess ###### restricts max len to 999999

aLen=0

' POSSI BLE TYPES

"() , : ; ?2?7? = bui | dI nFunc di medArray hn
dl kwr d | bl name num op str sub UDF unDi nmre
dArray

t ypes2Ski p$=

"() , : ; = | num op str bui | dl nFunc Kw

page 8/ 13

Liberty BASIC Community Wiki

rd "
for i = 1 to curTokenNum
ws=t oken$(i, t.type);":";token$(i, t.nane)
if instr(types2Skip$, token$(i, t.type))<>0 then [skipToken]
t oFi nd$="| " +wg+"| "
pos=i nstr(al ndex$, toFi nd$)
if pos =0 then
‘add it in array
aLen = alen+l
uni queNarme$(aLen, un.typeNane)=w$
uni queNanme$(aLen, un.count)="1" 'first tine
al ndex$=al ndex$+usi ng(" ######" , aLen) +t oFi nd$
el se
"get index for a word. FAST.
j = val (m d$(al ndex$, pos-6,6))
cnt = val (uni queNane$(j, un.count))
uni queNanme$(j, un.count)=str$(cnt+1)
end if
[ski pToken]
next

print time$("ms")-t0;" ns"
tO=ti me$("ns")

Print "sorting ..."
sort uni queNane$(), 1, aLen, 0

print time$("ms")-t0;" ns"

print "nDi ffWrds", alLen

print "----------------

print "Counter”, "Type", "Nane"

[LS | B e "
for i =1 to alLen

print uni queNane$(i, un.count), word$(uni queName$(i,
un.typeNane), 1,":"), _
wor d$(uni queNanme$(i, un.typeNane),2,":")
next

print "-over----------- "

[setLists]
qq$ = chr$(34) (")

page 9/ 13

Liberty BASIC Community Wiki

di gi t s$="1234567890"

letters$=""

for i=asc("A") to asc("Z")
letters$=letters$+chr$(i)

next

l etters$=l etters$+l oner $(I etterss)

firstVarChars$=letters$

var Char s$=l ett er s$+di gi t s$+". $"

firstNunChars$=di gi ts$+".-"

"from Rod's sol ution
"command | i st
conl i st $=
xor while wend wait until unloadbnp trace to titlebar tinmer then tex
teditor "
com i st $=conm i st $+
"textbox sub stylebits struct stopm di stop step statictext sort selec
t seek "
com i st $=comnl i st $+
"scan run return resune restore remredi mreadjoystick read random ze

com i st $=com i st $+
"radi obutton put pronpt printerdial og print popupnenu playwave playm d
i on
com i st $=conl i st $+
"password out or open oncomnerror notice nomai hwi n next nanme nod menu
com i st $=conl i st $+
"maphandl e mainwin | print |oop | oadbnp listbox line let kill input if

com i st $=conl i st $+
"groupbox graphi cbox goto gosub gl obal gettrimget function for fontdi
alog "

com i st $=conl i st $+
"files filedialog field exit error end el se dunp do dimdata cursor co
nfirm"

com i st $=conl i st $+
"conbobox col ordialog cls close checkbox case callfn calldll callback
call ™

com i st $=coml i st $+"button bnpsave bnpbutton beep as and "

'type operators
typlist$=
" word void ushort ulong short ptr none | ong dword doubl e bool ean "
" command operators
opel i st $=
wi ndow text random out put graphics dll dialog byref binary append "

page 10/ 13

Liberty BASIC Community Wiki

opel i st $=opel i st $+
"horizscrol |l bar vertscrollbar on off mn max w ndow nf w ndow popup gr
aphics_fs graphics_nsb graphics _fs nsb graphics nf_nsb "
opel i st $=opel i st $+
"text _fs text _nsb text nsb _ins dial og _nodal dialog nf dialog nf_ nodal
dialog fs dialog_nf_fs dialog_popup "
opel i st $=opel i st $+
"yel l ow brown red darkred pink darkpink blue darkblue green darkgreen
opel i st $=opel i st $+
"cyan darkcyan white black lightgray darkgray buttonface "

"function |ist
funlist$=
" word$ winstring val using wupper$ txcount trint tinme$ tan tab str$ s
ar "
funlist$=funlist$+
"space$ sin rnd rndir right$ not nkdir mn mdipos md$ max | ower$ | og
funlist$=funlist$+
“"lof loc len left$ int instr inputto$ input$ i np hwnd hexdec hbnp exp
funlist$=funlist$+
"eval eval $ eof dechex$ date$ cos chr$ atn asn asc acs abs
funlist$=funlist$+"upto$ after$ afterlast$ endswith renchar$ "
return

sub storeToken tkn$, type$
cur TokenNum=cur TokenNumt1
cur TokNum=cur TokNum+1
t oken$(cur TokenNum t. nane) =t kn$
t oken$(cur TokenNum t.type)=type$
t okenPos(cur TokenNum tp.line)=iif(contLine<>0, contLine, nLines)
t okenPos(cur TokenNum tp. stmt) =cur St mt Num
t okenPos(cur TokenNum tp.num = cur TokNum
end sub

function renttart Spaces$(aLi ne$)
whi t eSpaces$=chr $(9) +" "
for i = 1 to |len(aLine9)
c$=m d$(aLine$,i, 1)
i f instr(whiteSpaces$, c¢$)=0 then
rentt art Spaces$=m d$(aLi ne$, i)
exit function

page 11/13

Liberty BASIC Community Wiki

end if
next
end function

function | sNunber (i nput $)

‘checks input$ for being valid nunber.
| sNurmber = 0
' check sign
ns = eat Up(input$, "+-")
if ns>1 then exit function
"now, digits

nl = eatUp(input$, "0123456789")
"coul d be deci mal point

nd = eat Up(input$, ".")

if nd>1 then exit function
"then again, digits

n2 = eat Up(input$, "0123456789")

if nl+n2<1 then exit function

'now, exponent

ne = eat Up(input$, "e")

if ne<>0 then "we have exponent
if ne>1 then exit function
" check sign
ns = eat Up(i nput$,
if ns>1 then exit
"now, digits

n +_ n)
functi on

Returns 1 if yes,

"with Fal se

nl = eat Up(input$, "0123456789")
if nl<l then exit function
end if

if input$="" then IsNunber = 1:
el se we have | eftovers -
end function

function eat Up(byRef input$,
"trinms all leading chars from
‘return count of trimred characters
count = O
whi l e | en(i nput $)>0
if instr(chars2eats$,
input$ = m d$(i nput$, 2)

count = count +1
el se

exit while
end if

exit function
over with Fal se

char s2eat $)
input$ that match chars in chars2eat$

left$(input$, 1))<>0 then

0O ot herw se.

page 12/13

Liberty BASIC Community Wiki

wend
eat Up = count
end function

function iif(test, val Yes, val No)
iif = wvalNo
if test theniif = val Yes
end function

page 13/13

http://www.tcpdf.org

	Entry by tsh73

