
Liberty BASIC Community Wiki

Entry for Rod's Variables (2105) challenge

It's got too big to put it on a forum. Actually, I tried to do a tokenizer so it figures out all things including
numbers and strings. But after figuring things out it outputs only things that relevant to this task (variables,
subs/user functions, labels).
Uses keyword list etc from Rod's entry.
Tested on biggest program I've ever seen in LB - freeform404.bas ;)

'variable challenge
'tsh73, Jan 2015

global t.maxTokens, t.name, t.type, tp.line, tp.stmnt, tp.num
global curTokenNum, curTokNum, nLines, curStmntNum, contLine

[nonUsedLabel] dummy=1:dummy2=dummy 'non-used line with a (:)
unDimmed(3)=1 'example of un-dimmed array

gosub [setLists]

'fname$="vars01.bas"
'fname$="vars02.bas"
'fname$="test.bas"
filedialog "Select file to process";chr$(0);"open", "*.bas", fname$
if fname$="" then print "No file selected - bye": end
print "Processing "; fname$

t.maxTokens=100000
t.name = 0
t.type = 1
dim token$(t.maxTokens, 1)
tp.line=0
tp.stmnt=1
tp.num=2
dim tokenPos(t.maxTokens, 2)
curTokenNum=0 'global
curTokNum=0 'in a statement (that is between (:))

verbose = 0 '1

open fname$ for input as #1
nLines=1
isContinuation=0
print "Reading parsing line by line..."

 page 1 / 13

http://libertybasic.conforums.com/index.cgi?action=display&board=contests&num=1418803980&start=0#1419329462

Liberty BASIC Community Wiki

t0=time$("ms")
while not(eof(#1))
 nLines=nLines+1
 line input #1, aLine$
 if verbose then print ">"; aLine$
 curStmntNum=1
 curTokNum=0

 if isContinuation then
 if contLine=0 then contLine = nLines-1
 isContinuation=0
 else
 contLine=0
 end if

 while 1
 scan
 'reading a line splitting it to tokens
 '1) skip all starting spaces
 aLine$=remStartSpaces$(aLine$)
 'exit if nothing left
 if aLine$="" then exit while
 'print ":"; aLine$
 '2) check special sequences
 ''comment
 if left$(aLine$,1)="'" then 'skip line as comment
 if verbose then print " comment skipped"
 exit while
 end if
 '3) recognize / read / cut token
 select case
 '3.1) check special sequences
 '[label]
 case left$(aLine$,1)="["
 label$=upto$(aLine$, "]")+"]"
 aLine$=after$(aLine$, "]")
 if verbose then print " label: ";label$
 call storeToken label$, "lbl"
 '3.2) check special sequences
 '"string"
 case left$(aLine$,1)=qq$ 'string
 aLine$=mid$(aLine$,2) 'cut left (")
 aString$=qq$+upto$(aLine$,qq$)+qq$
 aLine$=after$(aLine$, qq$)
 if verbose then print " string: "; aString$
 call storeToken aString$, "str"

 page 2 / 13

Liberty BASIC Community Wiki

 case left$(aLine$,1)="_" and instr(varChars$, mid$(
aLine$,2,1))<>0 'winConst
 token$=left$(aLine$,1)
 aLine$=mid$(aLine$,2)
 while instr(varChars$;"_", left$(aLine$,1))<>0
 token$=token$+left$(aLine$,1)
 aLine$=mid$(aLine$,2)
 if aLine$="" then exit while
 wend
 if verbose then print " Windows constant: ";token$
 call storeToken token$, "winConst"

 case left$(aLine$,1)="_"
 aLine$=mid$(aLine$,2) 'cut token
 if verbose then print " continuation char"
 'call storeToken "_", "_" 'do not store?
 isContinuation=1

 case left$(aLine$,1)=":"
 aLine$=mid$(aLine$,2) 'cut token
 if verbose then print " operator separator"
 call storeToken ":", ":"
 curStmntNum=curStmntNum+1
 curTokNum=0

 case left$(aLine$,1)="|"
 aLine$=mid$(aLine$,2) 'cut token
 if verbose then print " menu separator"
 call storeToken "|", "|"

 case left$(aLine$,1)=","
 aLine$=mid$(aLine$,2) 'cut token
 if verbose then print " parameter separator"
 call storeToken ",", ","

 case left$(aLine$,1)=";"
 aLine$=mid$(aLine$,2) 'cut token
 if verbose then print " concatenation"
 call storeToken ";", ";"

 case left$(aLine$,1)="="
 aLine$=mid$(aLine$,2) 'cut token
 if verbose then print " assignment or equal"
 call storeToken "=", "="

 page 3 / 13

Liberty BASIC Community Wiki

 case left$(aLine$,1)="("
 aLine$=mid$(aLine$,2) 'cut token
 if verbose then print " opening ("
 call storeToken "(", "("
 case left$(aLine$,1)=")"
 aLine$=mid$(aLine$,2) 'cut token
 if verbose then print " closing)"
 call storeToken ")", ")"

 case left$(aLine$,1)="#" 'handle
 token$=left$(aLine$,1)
 aLine$=mid$(aLine$,2)
 while instr(varChars$, left$(aLine$,1))<>0
 token$=token$+left$(aLine$,1)
 aLine$=mid$(aLine$,2)
 if aLine$="" then exit while
 wend
 if verbose then print " handle: ";token$
 call storeToken token$, "hndl"

 case instr(firstVarChars$, left$(aLine$,1))<>0
'name (var, arr, sub, func) or keyword
 token$=left$(aLine$,1)
 aLine$=mid$(aLine$,2)
 while instr(varChars$, left$(aLine$,1))<>0 _
 or (left$(aLine$,1)="_" and instr(varChars$, mid$(
aLine$,2,1))<>0)
 token$=token$+left$(aLine$,1)
 aLine$=mid$(aLine$,2)
 if aLine$="" then exit while
 wend
 select case
 case instr(
comlist$;typlist$;opelist$, " ";lower$(token$);" ")<>0
 if verbose then print " keyword: ";token$
 call storeToken token$, "kwrd"
 'if REM
 if lower$(token$) = "rem" then 'comment
 if verbose then print " comment skipped"
 exit while
 end if

 case else
 if verbose then print
"name (var, array, sub, or func): ";token$
 call storeToken token$, "name"

 page 4 / 13

Liberty BASIC Community Wiki

 end select

 case instr(firstNumChars$, left$(aLine$,1))<>0 'number?
 notANumber=0
 select case
 case instr(digits$, left$(aLine$,1))<>0
 token$=left$(aLine$,1)
 aLine$=mid$(aLine$,2)
 case instr("-.", left$(aLine$,1))<>0 and IsNumber(
left$(aLine$,2))<>0
 token$=left$(aLine$,2)
 aLine$=mid$(aLine$,3)
 case left$(aLine$,2)="-." and IsNumber(left$(aLine$,3))<>0
 token$=left$(aLine$,3)
 aLine$=mid$(aLine$,4)
 case else
 notANumber=1
 end select
 if notANumber=0 then
 'read rest of a number
 while IsNumber(token$)<>0
 token$=token$+left$(aLine$,1)
 aLine$=mid$(aLine$,2)
 if aLine$="" then exit while
 wend
 if IsNumber(token$)=0 then
 'one char extra
 aLine$=right$(token$, 1)+aLine$
 token$=left$(token$, len(token$)-1)
 end if
 if verbose then print "number: ";token$
 call storeToken token$, "num"
 else 'should be single "-" (or not compiles)
 token$=left$(aLine$,1)
 aLine$=mid$(aLine$,2)
 if verbose then print " operator ";token$
 call storeToken token$, "op"
 end if

'should be moved after "numbers" so "-1" does not process as "-" "1"
 case instr("<>+-*/^", left$(aLine$,1))<>0
 token$=left$(aLine$,1)
 aLine$=mid$(aLine$,2) 'cut token
 if verbose then print " operator ";token$
 call storeToken token$, "op"

 page 5 / 13

Liberty BASIC Community Wiki

 case else
 token$=left$(aLine$,1)
 aLine$=mid$(aLine$,2)
 if verbose then print "??char: ";token$
 call storeToken token$, "???"
 end select
 wend
wend
close #1
print "----------------"
print "nLines=",nLines
print "numTokens=";curTokenNum

print time$("ms")-t0;" ms"
t0=time$("ms")

goto [SkipPrint]
for i = 1 to curTokenNum
 print tokenPos(i, tp.line);" ";_
 tokenPos(i, tp.stmnt);" ";_
 tokenPos(i, tp.num),_
 token$(i, t.type),_
 token$(i, t.name)
next
[SkipPrint]

'second pass along token$ array, check for next "(" - to tell function
s/arrays
Print "second pass along token$ array..."
i=0
while i <= curTokenNum
 i=i+1
 if token$(i, t.type)="name" then
 if i+1<=curTokenNum then
 if token$(i+1, t.type)="(" and _
 tokenPos(i, tp.line) = tokenPos(i+1, tp.line) and _
 tokenPos(i, tp.stmnt) = tokenPos(i+1, tp.stmnt) then
 if instr(funlist$, " ";lower$(token$(i, t.name));
" ")<>0 then
 token$(i, t.type)="buildInFunc"
 else
 token$(i, t.type)="UDForArray"
 end if
 end if
 end if

 page 6 / 13

Liberty BASIC Community Wiki

 end if
wend
print time$("ms")-t0;" ms"
t0=time$("ms")

'third pass, check for functions/subs/arrays
Print "third pass along token$ array..."
i=0
while i <= curTokenNum
 i=i+1
 if tokenPos(i, tp.num) = 1 then 'first token on a stmnt
 select case
 case lower$(token$(i, t.name)) ="dim" or lower$(token$(i,
 t.name)) ="redim"
 curLine = tokenPos(i, tp.line)
 curStmnt = tokenPos(i, tp.stmnt)
 while i+1<=curTokenNum
 if curLine <> tokenPos(i+1, tp.line) _
 or curStmnt <> tokenPos(i+1, tp.stmnt) then
exit while
 i=i+1
 if token$(i, t.type)="UDForArray" then token$(i,
 t.type)="dimmedArray"
 'mark all other instances
 for j = 1 to curTokenNum
 if token$(j, t.name)=token$(i, t.name) and _
 token$(j, t.type)="UDForArray" then
 token$(j, t.type)="dimmedArray"
 next
 wend

 case lower$(token$(i, t.name)) ="sub" or lower$(token$(i,
 t.name)) ="call"
 i=i+1
 token$(i, t.type)="sub"

 case lower$(token$(i, t.name)) ="function"
 i=i+1
 token$(i, t.type)="UDF"
 'mark all other instances
 for j = 1 to curTokenNum
 if token$(j, t.name)=token$(i, t.name) and _
 token$(j, t.type)="UDForArray" then token$(j,
 t.type)="UDF"
 next
 end select

 page 7 / 13

Liberty BASIC Community Wiki

 end if
wend
print time$("ms")-t0;" ms"
t0=time$("ms")

'all other "UDForArray" are undimmed arrays
Print "last pass along token$ array..."
for j = 1 to curTokenNum
 if token$(j, t.type)="UDForArray" then token$(j, t.type)=
"unDimmedArray"
next

goto [SkipPrint2]
print "----------------"
for i = 1 to curTokenNum
 print tokenPos(i, tp.line);" ";_
 tokenPos(i, tp.stmnt);" ";_
 tokenPos(i, tp.num),_
 token$(i, t.type),_
 token$(i, t.name)
next

print "----------------"

[SkipPrint2]

print time$("ms")-t0;" ms"
t0=time$("ms")

'count variables
Print "Counting ..."

un.typeName=0
un.count=1
dim uniqueName$(curTokenNum,1)

aIndex$ = ""
'aIndex would be in a form ######|word|, where ###### index in a()
 'You can guess ###### restricts max len to 999999
aLen=0
'POSSIBLE TYPES
'() , : ; ??? = buildInFunc dimmedArray hn
dl kwrd lbl name num op str sub UDF unDimme
dArray
types2Skip$=
"() , : ; = | num op str buildInFunc kw

 page 8 / 13

Liberty BASIC Community Wiki

rd "
for i = 1 to curTokenNum
 w$=token$(i, t.type);":";token$(i, t.name)
 if instr(types2Skip$, token$(i, t.type))<>0 then [skipToken]
 toFind$="|"+w$+"|"
 pos=instr(aIndex$, toFind$)
 if pos =0 then
 'add it in array
 aLen = aLen+1
 uniqueName$(aLen, un.typeName)=w$
 uniqueName$(aLen, un.count)="1" 'first time
 aIndex$=aIndex$+using("######",aLen)+toFind$
 else
 'get index for a word. FAST.
 j = val(mid$(aIndex$, pos-6,6))
 cnt = val(uniqueName$(j, un.count))
 uniqueName$(j, un.count)=str$(cnt+1)
 end if
[skipToken]
next

print time$("ms")-t0;" ms"
t0=time$("ms")

Print "sorting ..."
sort uniqueName$(),1,aLen,0

print time$("ms")-t0;" ms"

print "nDiffWords", aLen
print "----------------"
print "Counter", "Type", "Name"
print "---"
for i = 1 to aLen
 print uniqueName$(i, un.count), word$(uniqueName$(i,
 un.typeName),1,":"), _
 word$(uniqueName$(i, un.typeName),2,":")
next

print "-over-----------"

end
'----------------------
[setLists]
 qq$ = chr$(34) '(")

 page 9 / 13

Liberty BASIC Community Wiki

 digits$="1234567890"
 letters$=""
 for i=asc("A") to asc("Z")
 letters$=letters$+chr$(i)
 next
 letters$=letters$+lower$(letters$)
 firstVarChars$=letters$
 varChars$=letters$+digits$+".$"
 firstNumChars$=digits$+".-"

 'from Rod's solution
 'command list
 comlist$=
" xor while wend wait until unloadbmp trace to titlebar timer then tex
teditor "
 comlist$=comlist$+
"textbox sub stylebits struct stopmidi stop step statictext sort selec
t seek "
 comlist$=comlist$+
"scan run return resume restore rem redim readjoystick read randomize
"
 comlist$=comlist$+
"radiobutton put prompt printerdialog print popupmenu playwave playmid
i "
 comlist$=comlist$+
"password out or open oncomerror notice nomainwin next name mod menu "
 comlist$=comlist$+
"maphandle mainwin lprint loop loadbmp listbox line let kill input if
"
 comlist$=comlist$+
"groupbox graphicbox goto gosub global gettrim get function for fontdi
alog "
 comlist$=comlist$+
"files filedialog field exit error end else dump do dim data cursor co
nfirm "
 comlist$=comlist$+
"combobox colordialog cls close checkbox case callfn calldll callback
call "
 comlist$=comlist$+"button bmpsave bmpbutton beep as and "

 'type operators
 typlist$=
" word void ushort ulong short ptr none long dword double boolean "
 'command operators
 opelist$=
" window text random output graphics dll dialog byref binary append "

 page 10 / 13

Liberty BASIC Community Wiki

 opelist$=opelist$+
"horizscrollbar vertscrollbar on off min max window_nf window_popup gr
aphics_fs graphics_nsb graphics_fs_nsb graphics_nf_nsb "
 opelist$=opelist$+
"text_fs text_nsb text_nsb_ins dialog_modal dialog_nf dialog_nf_modal
dialog_fs dialog_nf_fs dialog_popup "
 opelist$=opelist$+
"yellow brown red darkred pink darkpink blue darkblue green darkgreen
"
 opelist$=opelist$+
"cyan darkcyan white black lightgray darkgray buttonface "

 'function list
 funlist$=
" word$ winstring val using upper$ txcount trim$ time$ tan tab str$ s
qr "
 funlist$=funlist$+
"space$ sin rnd rmdir right$ not mkdir min midipos mid$ max lower$ log
 "
 funlist$=funlist$+
"lof loc len left$ int instr inputto$ input$ inp hwnd hexdec hbmp exp
"
 funlist$=funlist$+
"eval eval$ eof dechex$ date$ cos chr$ atn asn asc acs abs "
 funlist$=funlist$+"upto$ after$ afterlast$ endswith remchar$ "
return
'---------------------

sub storeToken tkn$, type$
 curTokenNum=curTokenNum+1
 curTokNum=curTokNum+1
 token$(curTokenNum, t.name)=tkn$
 token$(curTokenNum, t.type)=type$
 tokenPos(curTokenNum, tp.line)=iif(contLine<>0, contLine, nLines)
 tokenPos(curTokenNum, tp.stmnt)=curStmntNum
 tokenPos(curTokenNum, tp.num) = curTokNum
end sub

'---------------------
function remStartSpaces$(aLine$)
 whiteSpaces$=chr$(9)+" "
 for i = 1 to len(aLine$)
 c$=mid$(aLine$,i,1)
 if instr(whiteSpaces$, c$)=0 then
 remStartSpaces$=mid$(aLine$,i)
 exit function

 page 11 / 13

Liberty BASIC Community Wiki

 end if
 next
end function

'---
function IsNumber(input$)
'checks input$ for being valid number. Returns 1 if yes, 0 otherwise.
 IsNumber = 0
 'check sign
 ns = eatUp(input$, "+-")
 if ns>1 then exit function 'with False
 'now, digits
 n1 = eatUp(input$, "0123456789")
 'could be decimal point
 nd = eatUp(input$, ".")
 if nd>1 then exit function
 'then again, digits
 n2 = eatUp(input$, "0123456789")
 if n1+n2<1 then exit function
 'now, exponent
 ne = eatUp(input$, "e")
 if ne<>0 then 'we have exponent
 if ne>1 then exit function
 'check sign
 ns = eatUp(input$, "+-")
 if ns>1 then exit function
 'now, digits
 n1 = eatUp(input$, "0123456789")
 if n1<1 then exit function
 end if

 if input$="" then IsNumber = 1: exit function
 'else we have leftovers - over with False
end function

function eatUp(byRef input$, chars2eat$)
'trims all leading chars from input$ that match chars in chars2eat$
'return count of trimmed characters
 count = 0
 while len(input$)>0
 if instr(chars2eat$, left$(input$,1))<>0 then
 input$ = mid$(input$,2)
 count = count +1
 else
 exit while
 end if

 page 12 / 13

Liberty BASIC Community Wiki

 wend
 eatUp = count
end function

function iif(test, valYes, valNo)
 iif = valNo
 if test then iif = valYes
end function

Powered by TCPDF (www.tcpdf.org)

 page 13 / 13

http://www.tcpdf.org

	Entry by tsh73

