
Liberty BASIC Community Wiki

How to FLUSH Without Running Out of Resources

Flushing Your Graphics

-
 JanetTerra Jul 22, 2006

Drawing graphics with Liberty BASIC is very easy. Using native Liberty BASIC commands, the
programmer can draw lines, circles, boxes and other Turtle graphics. In addition, the commands
LOADBMP and DRAWBMP allows the programmer to draw bitmaps retrieved from file.

Graphics consume memory, though, especially when graphics are meant to persist. A persisted graphic is
one that will redraw itself whenever the window becomes minimized, obscured, or dragged offscreen. The
Liberty BASIC command that causes a graphic to persist or stick is FLUSH. Run this demo to see how
FLUSH works.

 Nomainwin
 WindowWidth = 787
 WindowHeight = 594
 UpperLeftX = Int((DisplayWidth - WindowWidth) / 2)
 UpperLeftY = Int((DisplayHeight - WindowHeight) / 2)

 Graphicbox #demo.g, 0, 0, 780, 560
 Open "Flushed and Non-Flushed Graphics" for Window as #demo
 Print #demo, "Trapclose [QuitDemo]"

' Put the pen in the down position and assign the color
 Print #demo.g, "Down; Fill Buttonface; Color Buttonface"

' Draw the upper concentric circles
' Place the pen in the center of the upper half
 Print #demo.g, "Place 390 180"
' Choose 5 background colors
 hue$ = "Red Yellow White Blue Green"
' Draw a colorful figure
ct = 1
For i = 100 to 10 Step -10
 Print #demo.g, "Backcolor ";Word$(hue$, ct)
 Print #demo.g, "Circlefilled ";i
 ct = ct + 1
 If ct = 6 Then
 ct = 1
 End If
Next i
' FLUSH the upper picture

 page 1 / 9

https://www.wikispaces.com/user/view/JanetTerra
https://www.wikispaces.com/user/view/JanetTerra
http://www.libertybasic.com
http://www.libertybasic.com
http://www.libertybasic.com

Liberty BASIC Community Wiki

 Print #demo.g, "Flush"

' Draw the lower concentric circles
' Place the pen in the center of the lower half
 Print #demo.g, "Place 390 420"
' Choose 5 background colors
 hue$ = "Red Yellow White Blue Green"
' Draw a colorful figure
For i = 100 to 10 Step -10
 Print #demo.g, "Backcolor ";Word$(hue$, ct)
 Print #demo.g, "Circlefilled ";i
 ct = ct + 1
 If ct = 6 Then
 ct = 1
 End If
Next i
' Don't FLUSH the lower picture

 Wait

[QuitDemo]
 Close #demo
 End

Once the program has been executed, drag the window partway off the display screen and then back onto
the display screen. The FLUSHed, upper figure becomes redrawn as the window becomes viewable again.
The Non-FLUSHed, lower figure does not.

From the Liberty BASIC Help File

print #handle, "flush"
This command ensures that drawn graphics 'stick'. Each time a flush command is issued after one or more
drawing operations, a new group (called a segment) is created. Each segment of drawn items has an ID
number. The segment command retrieves the ID number of the current segment. Each time a segment is
flushed, a new empty segment is created, and the ID number increases by one. See also the commands cls,
delsegment, discard, redraw, and segment.

FLUSHing does make the final display persist, but it does so by reexecuting each step in the sequence of
the building of the FLUSHed graphic. To see this reexecution of code in action, run this next demo.

Warning: This demo WILL cause flashing. DO NOT run this demo if you have a history of seizures.

 Nomainwin
 WindowWidth = 787
 WindowHeight = 594

 page 2 / 9

http://www.libertybasic.com

Liberty BASIC Community Wiki

 UpperLeftX = Int((DisplayWidth - WindowWidth) / 2)
 UpperLeftY = Int((DisplayHeight - WindowHeight) / 2)

 Graphicbox #demo.g, 0, 0, 780, 560
 Open "Windows Repainting FLUSHED Graphics" for Window as #demo
 Print #demo, "Trapclose [QuitDemo]"

' Put the pen in the down position and assign the color
 Print #demo.g, "Down; Fill Buttonface; Color Buttonface"

' Fill the box with concentric circles
' Place the pen in the center of the graphicbox
 Print #demo.g, "Home"
' Choose 5 background colors
 hue$ = "Red Yellow White Blue Green"
' Draw a colorful figure 5 times
 ct = 1
 For i = 1 to 5
 For j = 700 to 10 Step -10
 Print #demo.g, "Backcolor ";Word$(hue$, ct)
 Print #demo.g, "Circlefilled ";j
 ct = ct + 1
 If ct = 6 Then
 ct = 1
 End If
 Next j
 Next i
' FLUSH the upper picture
 Print #demo.g, "Flush"

 Wait

[QuitDemo]
 Close #demo
 End

When the code has been executed, maximize and restore the window several times. Watch how the
window repaint itself. For more information on segments and FLUSHed graphics see Segments and
Flushing - a Graphics Tutorial by Alyce Watson in the Liberty BASIC Newsletter, Issue #102.

The Problem with Memory and Graphics

It is obviously good programming technique to keep your graphics FLUSHed. This is especially true when
the program calls for the graphics to change throughout the program. Unfortunately, FLUSHing comes at

 page 3 / 9

http://babek.info/libertybasicfiles/lbnews/nl102/4.htm
http://babek.info/libertybasicfiles/lbnews/nl102/4.htm
http://www.alycesrestaurant.com
http://babek.info/libertybasicfiles/lbnews/
http://lbpe.wikispaces.com/space/showimage/nl102.zip

Liberty BASIC Community Wiki

a high cost and that price can very quickly deplete your system's resources. One way to keep an eye on
resources is to open Task Manager and watch the Commit Charge numbers in the lower right corner.

Each FLUSH command increases this Commit Charge, very quickly to the point of slowing and eventually
crashing the program. Open Task Manager while this next demo runs. You may want to change the

For i = 1 to 5

to

For i = 1 to 3

to be sure the program doesn't crash. If you encounter a crash, highlight liberty.exe in Task Manager >
Applications and press End Process. While the program is running, the Commit Charge gradually, yet
steadily, increases. Even when Liberty BASIC is dutifully closed, the resources aren't completely restored
to the pre-run level.

The Full Demo

' Demo1 - Flush each tile
' Nomainwin
 WindowWidth = 787
 WindowHeight = 594
 UpperLeftX = Int((DisplayWidth - WindowWidth) / 2)
 UpperLeftY = Int((DisplayHeight - WindowHeight) / 2)

 Graphicbox #demo.g, 0, 0, 780, 560
 Open "Flushing Demo 1" for Window as #demo
 Print #demo, "Trapclose [QuitDemo]"

 page 4 / 9

http://www.libertybasic.com

Liberty BASIC Community Wiki

' Put the pen in the down position and assign the color
 Print #demo.g, "Down; Color Pink"
' Choose 5 background colors
 hue$ = "Red Yellow White Blue Green"
' Draw a tiled background, flushing with each tile drawn
For i = 1 to 5
 Print #demo.g, "Backcolor ";Word$(hue$, i)
 For y = 0 to 540 Step 20
 For x = 0 to 760 Step 20
 Print #demo.g, "Place ";x;" ";y
 Print #demo.g, "Boxfilled ";x + 20;" ";y + 20
' Flush after each tile drawn
 Print #demo.g, "Flush"
 Next x
 Next y
Next i
Print "Done"
 Wait

[QuitDemo]
 Close #demo
 End

Look again at the Commit Charge.

Here it has risen from 338 to 355. The Commit Charge will continue to rise with each FLUSH until the
program crashes.

Using GETBMP and DRAWBMP

What can the programmer do, then, to make graphics persist without consuming large resources of
memory? One way is to not FLUSH each step or segment of the draw, but to capture the final output as a
bitmap and draw the whole display in one step. GETBMP captures the graphic display from the screen

 page 5 / 9

Liberty BASIC Community Wiki

rather than loading it from a file. DRAWBMP then draws that bitmap. When a bitmap is drawn, the whole
picture is drawn as one segment rather than a series of individual segments.

 Nomainwin
 WindowWidth = 787
 WindowHeight = 594
 UpperLeftX = Int((DisplayWidth - WindowWidth) / 2)
 UpperLeftY = Int((DisplayHeight - WindowHeight) / 2)

 Graphicbox #demo.g, 0, 0, 780, 560
 Open "Capturing a Bitmap" for Window as #demo
 Print #demo, "Trapclose [QuitDemo]"

' Put the pen in the down position and assign the color
 Print #demo.g, "Down; Fill Buttonface; Color Buttonface"
' Draw some concentric circles
' Choose 5 background colors
 hue$ = "Red Yellow White Blue Green"
' Position the pen
 Print #demo.g, "Place 100 100"
' Set the counter to 1
 ct = 1
' Draw concentric circles
For i = 100 to 10 Step -10
 Print #demo.g, "Backcolor ";Word$(hue$, ct)
 Print #demo.g, "Circlefilled ";i
 ct = ct + 1
 If ct = 6 Then
 ct = 1
 End If
Next i
' Get the bitmap
 Print #demo.g, "Getbmp ConcentricCircles 0 0 200 200"
' Let mouse click select a position
 Print #demo.g, "When leftButtonUp [DrawBitmap]"

' Wait for mouseclick
 Wait

[DrawBitmap]
' Get the mouse coordinates
 x = MouseX
 y = MouseY
' Clear the screen - Cls clears all graphics memory as well
 Print #demo.g, "Cls"

 page 6 / 9

Liberty BASIC Community Wiki

' Position the upper left corner at x, y
 Print #demo.g, "Drawbmp ConcentricCircles ";x;" ";y
' Flush the drawing
 Print #demo.g, "Flush"

 Wait

[QuitDemo]
 Close #demo
 End

Capturing the Graphic Window

Using this same GETBMP technique, the entire window can be captured as a bitmap. The drawn bitmap is
then FLUSHed rather than the multitude of individual segments. Demo2 is a modification of Demo1,
FLUSHing the drawn bitmaps. In addition, as each bitmap is drawn, the prior segment is deleted with the
DELSEGMENT command. This allows just one segment to remain in memory at any given time, thus
relieving the drain on resources required for storing hundreds of segments.

' Demo2 - Deleting Segments and Flushing Bitmaps
' Nomainwin
 WindowWidth = 787
 WindowHeight = 594
 UpperLeftX = Int((DisplayWidth - WindowWidth) / 2)
 UpperLeftY = Int((DisplayHeight - WindowHeight) / 2)

 Graphicbox #demo.g, 0, 0, 780, 560
 Open "Flushing Demo 2" for Window as #demo
 Print #demo, "Trapclose [QuitDemo]"

' Put the pen in the down position and assign the color
 Print #demo.g, "Down; Color Pink"
' Capture the initial bitmap
 Print #demo.g, "Getbmp DemoPic 0 0 780 560"
' Get the segment number
 Print #demo.g, "Segment segID"
' Flush
 Print #demo.g, "Flush"

' Choose 5 background colors
 hue$ = "Red Yellow White Blue Green"
' Draw a tiled background, flushing with each tile drawn
For i = 1 to 3

 page 7 / 9

Liberty BASIC Community Wiki

 Print #demo.g, "Backcolor ";Word$(hue$, i)
 For y = 0 to 540 Step 20
 For x = 0 to 760 Step 20
 Print #demo.g, "Place ";x;" ";y
 Print #demo.g, "Boxfilled ";x + 20;" ";y + 20
' Delete the old segment
 Print #demo.g, "Delsegment ";segID
' Unload the previous bitmap
 Unloadbmp "DemoPic"
' Capture the entire graphic as a bitmap
 Print #demo.g, "Getbmp DemoPic 0 0 780 560"
' Draw the entire window
 Print #demo.g, "Drawbmp DemoPic 0 0"
' Get the segment number
 Print #demo.g, "Segment segID"
' Flush the bitmap
 Print #demo.g, "Flush"
 Next x
 Next y
Next i
Print "Done"
 Wait

[QuitDemo]
 Close #demo
 End

Using DELSEGMENT, the Commit Charge remains at a consistent, safe level. Segment.bas is an example
program that ships with Liberty BASIC. Segment.bas demonstrates the DELSEGMENT command.

When running these demos, you may notice that the DELSEGMENT, GETBMP, DRAWBMP,
SEGMENT, FLUSH, sequence takes a bit more time than just a simple FLUSH. In most programs, the
increased time will be negligible and virtually imperceptible.

 page 8 / 9

http://www.libertybasic.com

Liberty BASIC Community Wiki

Special Considerations with GETBMP

The GETBMP command captures the visible portion of the display. Areas extending beyond these visible
limits will result in images of the topmost display. One way to avoid unintended capturing of another
window is to keep the Liberty BASIC graphic window topmost with stylebits.

 Stylebits #demo, 0, 0, _WS_EX_TOPMOST, 0

More experienced Liberty BASIC users may want to first draw the images and then capture those images
in memory. The captured bitmap can then be drawn to the partially visible graphic window and FLUSHed
like any other drawing. For more information on drawing in memory, see Drawing in Memory by Alyce
Watson in the Liberty BASIC Newsletter, Issue #101.

Summary

FLUSH is a viable option for preserving graphics when only a few FLUSH commands are scattered
throughout the program. FLUSHing thousands, hundreds, or even dozens of times in your program will
very quickly drain system resources. CLS is the most expedient way to free these graphics resources.
When CLS isn't feasible, consider using the DELSEGMENT, GETBMP, DRAWBMP, SEGMENT,
FLUSH sequence to keep your graphics program running smoothly and to prevent your program from
crashing.

Powered by TCPDF (www.tcpdf.org)

 page 9 / 9

http://www.libertybasic.com
http://babek.info/libertybasicfiles/lbnews/nl102/4.htm
http://www.alycesrestaurant.com
http://www.alycesrestaurant.com
http://babek.info/libertybasicfiles/lbnews/
http://lbpe.wikispaces.com/space/showimage/nl101.zip
http://www.tcpdf.org

	FlushConserveBMP

